API Reference
MvNormalCalibration.computecalibration
— Methodcomputecalibration(preds::AbstractVector{<:Normal}, truevals::AbstractVector{<:Real}; pvals)
computecalibration(preds::AbstractVector{<:MvNormal}, truevals::AbstractVector{<:AbstractVector{<:Real}}; pvals)
Compute calibration for a series of predicted (uni- or multivariate) normal distributions given a series of true observations using central prediction sets.
Returns a named tuple (; pvals, calibrationvals)
. If the predictions are well calibrated, then pvals ≈ calibrationvals
for all indices. Plotting plot(pvals, calibrationvals)
should then give a straight line from (0, 0), to (1, 1).
kwargs
pvals
: The probabilities to evaluate the coverage at. Defaults to0:0.05:1
.
MvNormalCalibration.sharpness
— Methodsharpness(pred::Normal)
sharpness(pred::AbstractMvNormal)
Compute sharpness for (uni- or multivariate) normal distribution, which we define as the (hyper-)volume of the ellipsoid that contains one standard deviation of the distribution.
Examples
julia> sharpness(Normal())
2
julia> sharpness(MvNormal(zeros(2), I(2))) # recall area of circle=πr^2
π